Fecal microbiome profiling of piglets during postweaning diarrhea outbreaks

Mattia Pirolo

Dep. of Veterinary and Animal Sciences

es 👔

UNIVERSITY OF COPENHAGEN

Post-weaning diarrhea (PWD) in pigs

Occurs the first two weeks after weaning

Low growth performance

High treatment costs

Bacterial (enterotoxigenic E. coli - ETEC) and viral pathogens (Rotavirus)

Our interest in PWD includes

Improve diagnosis	Identify effective non-antibiotic treatments to reduce AMU	Understand PWD aetiology
-------------------	--	--------------------------

Our hypothesis on PWD development

Within the same pen some piglets develop PWD while others remains healthy

Our hypothesis: the development of PWD is facilitated by a pre-existing state of dysbiosis

Our approach to study PWD development

0

Study background data

0 1 2 3 4 5 6 7 8 9 10 11 12 13 0 Days after insertion to the nursery

Porcine Health Management https://doi.org/10.1186/s40813-021-00232-z **Open Access** RESEARCH Check fo Post-weaning diarrhea in pigs weaned without medicinal zinc: risk factors, pathogen dynamics, and association to growth rate

Esben Østergaard Eriksen^{1*}¹⁰, Egle Kudirkiene¹, Anja Ejlersgård Christensen², Marianne Viuf Agerlin³, Nicolai Rosager Weber³, Ane Nødtvedt⁴, Jens Peter Nielsen¹, Katrine Top Hartmann¹, Lotte Skade³, Lars Erik Larsen¹, Karen Pankoke¹, John Elmerdahl Olsen¹, Henrik Elvang Jensen¹ and Ken Steen Pedersen^{1,2}

Prevalence of diarrhoea during the first 14 days after insertion

1 2 3 4 5 6 7 8 9 10 11 12 13

Days after insertion to the nursery

Cumulative incidence of diarrhoea by microbial aetiology

Eriksen et al. Porc Health Manag (2021) 7:54

Study design

2) All samples from two pigs that remained healthy throughout the study

Community structure (beta-diversity) results

Significantly differences (PERMANOVA, *p* <0.05) were observed in the community structure of healthy and asymptomatic diseased animals in both farms

Machine learning analysis to classify samples by health status

Farm A: 10 MAGs

MAG ID	Family	Species
MAG0001	Lachnospiraceae	Oliverpabstia spp.
MAG0058	Oscillospiraceae	Vescimonas spp.
MAG0119	Oscillospiraceae	Faecousia spp.
MAG0434	Bacteroidaceae	Prevotella spp.
MAG0622	Oscillospiraceae	Faecousia spp.
MAG0882	Lachnospiraceae	Oliverpabstia intestinalis
MAG0886	Lactobacillaceae	Limosilactobacillus reuteri
MAG1019	Lachnospiraceae	Blautia spp.
MAG1020	Oscillospiraceae	Faecousia spp.
MAG1028	Oscillospiraceae	Limivicinus spp.

Farm B: 9 MAGs

MAG ID	Family	Species
MAG0301	Anaerovoracaceae	RUG099 spp.
MAG0357	Acidaminococcaceae	Phascolarctobacterium spp.
MAG0461	Butyricicoccaceae	Butyricicoccus spp.
MAG0851	CAG-138	UBA1685 spp.
MAG0872	Oscillospiraceae	F23-B02 spp.
MAG0877	Ruminococcaceae	SFIE01 spp.
MAG0880	Oscillospiraceae	F23-B02 spp.
MAG0983	Butyricicoccaceae	Butyricicoccus spp.
MAG1090	Oscillospiraceae	Vescimonas spp.

ML analysis predicted different metagenomicassembled genomes (MAG) to be associated with healthy animals in both farms

Lactobacillaceae, Lachnospiraceae and Oscillospiraceae as probiotic candidates

Microorganism Name	Treatment	Host Health Influence	Reference		
Lactobacillus acidophilus, Lactobacillus casei, Bifidobacterium thermophilum and Enterococcus faecium	Piglets weaned at 28 d of age were fed the basal diet mixed the probiotics (0.25 \times 10 ⁸ CFU/g for each strain) for 25 days, and orally administered with ETEC F18+ (2 \times 10 ⁹ CFU/g) on day 13 postweaning	Decreasing serum TNF- α ; increasing jejunal villus height, and especially villus height-to-crypt depth ratio in piglets	(Sun et al., 2021b)		
Lactobacillus delbrueckii	The piglets were orally administrated with Lactobacillus delbrueckii (50×10^8 CFU/mL) at amounts of 1, 2, 3, and 4 mL per animal at 1, 3, 7, and 14 d of age	Increasing the height of intestinal villi of piglets; promoting the expression of intestinal TJs proteins, and reducing the incidence of diarrhea by more than 50%	(Li et al., 2019b)		
Enterococcus faecalis	Piglets weaned at 26 d of age were fed basal diet supplemented with <i>Enterococcus faecalis</i> (2.5×10^9 CFU/kg) for 28 days	Enterococcus faecalis and neomycin sulfate decreased diarrhea index and improve growth performance, Enterococcus faecalis increased Lactobacillus in feces	(Hu et al., 2015)		
Lactobacillus plantarum	Piglets (4 d of age) were orally administrated with <i>Lactobacillus plantarum</i> (5 \times 10 ¹⁰ CFU/kg) for 15 days and then orally administrated with ETEC F4 (1 \times 10 ⁸ CFU per pig)	Improving performance and effectively preventing the diarrhea; improving function of the intestinal barrier by protecting intestinal morphology and intestinal permeability and the expression of genes for TJs proteins	(Yang et al., 2014)		
Lactobacillus zeae and Lactobacillus casei	Piglets weaned at 28 d of age were fed corn-soybean meal mixed feed fermented by <i>Lactobacillus zeae</i> and <i>Lactobacillus casei</i> for 3 days, and then orally challenged with 1 mL <i>Salmonella</i> (1 × 10 ⁶ CFU/mL)	Decreasing pro-inflammatory cytokine expression and alleviating Salmonella infection	(Yin et al., 2014)		
Enterococcus faecium, Bacillus subtilis, Saccharomyces cerevisiae and Lactobacillus paracasei	Piglet weaned at 28 d of age were fed the basal diet mixed the probiotics (>1 \times 10 8 CFU/g for each strain) for 21days	Increasing fecal acetic acid and propionic acid; increasing growth performance and significantly reducing PWD	(Lu et al., 2018)		

Effects of probiotics on treating PWD

GUT MICROBES 2021, VOL. 13, NO. 1, e1987783 (18 pages) https://doi.org/10.1080/19490976.2021.1987783

REVIEW

OPEN ACCESS

Oscillospira - a candidate for the next-generation probiotics

Jingpeng Yang (), Yanan Li, Zhiqiang Wen, Wenzheng Liu, Lingtong Meng, and He Huang School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China

Journal of Animal Science, 2021, Vol. 99, No. 3, 1–11

doi:10.1093/jas/skab045 Advance Access publication February 11, 2021 Received: 16 November 2020 and Accepted: 5 February 2021 Microbiology and Microbiome

MICROBIOLOGY AND MICROBIOME

Identification of the relationship between the gut microbiome and feed efficiency in a commercial pig cohort

Hui Jiang,[†] Shaoming Fang,[†] Hui Yang,^{†,‡,1} and Congying Chen^{†,1,2}

¹State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, PR China, ¹College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330045, PR China

Abstract

Feed efficiency (FE) is an economically important trait in pig production. Gut microbiota plays an important role in energy harvest, nutrient metabolism, and fermentation of dietary indigestible components. Whether and which gut microbes affect FE in pigs are largely unknown. Here, a total of 208 healthy Duroc pigs were used as experimental materials. Feces and serum samples were collected at the age of 140 d. We first performed 165 rRNA gene and metagenomic sequencing analysis to investigate the relationship between the gut microbiome and **porcine residual feed intake (RFI)**. 165 rRNA gene sequencing analysis detected 21 operational taxonomic units showing the tendency to correlation with the RFI (P < 0.01). Metagenomic sequencing further identified that the members of Clostrialase, e.g., Ruminocccus flavefaoiens, Lachnospiracecea bacterium 28.4, and Lachnospiracecea phytofermentans, were enriched in pigs with low RFI (high-FE), while 11 bacterial aspecies

Su et al., 2022 - Front Cell Infect Microbiol

Members of these bacterial families are culturable!

What's next?

- Integrate other relevant metadata in the ML analysis
- Identify microbiome markers associated with PWD

Application to DFF Research Project 2: **Pig culturomics to understand and limit diarrhea** (PIG-CULT)

- When do these beneficial bacteria colonize the piglet's intestinal microbiota after birth?
 - Can these beneficial bacteria be isolated and used for probiotic development?

Created with ChatGPT (OpenAI) with DALL-E