Effect of alternative feed additives to medicinal zinc on the productivity, diarrhoea incidence and gut development in weaned pigs

Gizaw Dabessa Satessa, Niels J. Kjeldsen, Julie Krogdahl, Sofja Eklund Koziara, Rajan DhaKal, Mette Olaf Nielsen

gizaw.satessa@sund.ku.dk

30 January 2018
Remedies

- Antibiotics
 - Resistance

- Zinc oxide (within 5 yrs)
 - Environmental
 - Co-selection for MRSA

Potential alternatives
- Probiotics
- Prebiotics
- Enzymes
- Essential oils
- Organic acids
- Seaweeds

Our focus
- 2500 to 1500 ppm ZnO
- Other alternatives (MG, GP & OFS)
Objectives

Can dietary ZnO be reduced from 2500 to 1500 ppm ZnO?
 - 40% reduction in release
 - But efficacy and production data – not available

Can other alternatives substitute ZnO?

• **Oceanfeed™ Swine** (macroalgae product; OFS)
 - Contains array of bioactive compounds

• **Miya-Gold®** (probiotic; MG)
 - Feed additive with spore of *Clostridium butyricum*

• **GærPlus** (synbiotics; GP)
 - Consists of probiotics (*Bacillus Licheniformis* & *Subtilis*) and the prebiotics (mannan oligosaccharides and β-glucans derived from yeast cell wall)
Experimental design and animals

- Grønhøj Experimental Station, 15 July 2016 to 15 February 2017
- 4,680 piglets from weaning to 35 days of age
 - 180 piglets inserted per week
- BW at insertion: 7± 0.25 kg (no difference among groups), BW at exit: 30 kg
- Six dietary treatments: 2500 ppm ZnO, 1500 ppm ZnO, 0 ZnO, OFS, MG and GP
- Subgroup of 15 piglets/treatment slaughtered D11 after weaning
 - Body proportions
 - Weight of tissue and contents of different segments of the gastrointestinal tract
- Postweaning diarrhea (PWD) treatments
 - First 2 pigs with diarrhea: individually treated
 - 3 or more cases: entire flock (pen) treated
Dietary treatments

<table>
<thead>
<tr>
<th>Feeding Phase:</th>
<th>2,500 Zn</th>
<th>1,500 Zn</th>
<th>0 Zn</th>
<th>OFS</th>
<th>MG</th>
<th>GP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase 1 (d 0 to 11, 7-9 kg)</td>
<td>2,500 Zn</td>
<td>1,500 Zn</td>
<td>0 Zn</td>
<td>1.5%</td>
<td>2 kg / ton</td>
<td>0.5 kg / ton</td>
</tr>
<tr>
<td>Phase 2 (d 12 to 27, 9-15 kg)</td>
<td>0 Zn</td>
<td>0 Zn</td>
<td>0 Zn</td>
<td>1.5%</td>
<td>1 kg / ton</td>
<td>0.5 kg / ton</td>
</tr>
<tr>
<td>Phase 3 (d 28 to 52, 15-30 kg)</td>
<td>0 Zn</td>
<td>0 Zn</td>
<td>0 Zn</td>
<td>1.5%</td>
<td>0.5 kg / ton</td>
<td>0.25 kg / ton</td>
</tr>
</tbody>
</table>
Results: Piglet performance

<table>
<thead>
<tr>
<th>Group</th>
<th>2,500 Zn</th>
<th>1,500 Zn</th>
<th>0 Zn</th>
<th>OF</th>
<th>MG</th>
<th>GP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase 1, d 0 to 11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADFI</td>
<td>0.31<sup>a</sup></td>
<td>0.29<sup>b</sup></td>
<td>0.25<sup>b</sup></td>
<td>0.26<sup>b</sup></td>
<td>0.25<sup>b</sup></td>
<td>0.26<sup>b</sup></td>
</tr>
<tr>
<td>ADG</td>
<td>222<sup>a</sup></td>
<td>207<sup>b</sup></td>
<td>153<sup>b</sup></td>
<td>164<sup>b</sup></td>
<td>153<sup>b</sup></td>
<td>156<sup>b</sup></td>
</tr>
<tr>
<td>FCR</td>
<td>1.40<sup>a</sup></td>
<td>1.44<sup>a</sup></td>
<td>1.68<sup>b</sup></td>
<td>1.62<sup>b</sup></td>
<td>1.72<sup>b</sup></td>
<td>1.71<sup>b</sup></td>
</tr>
<tr>
<td>Phase 2, d 12 to 27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADFI/ADG/FCR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No significant difference</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total period, d 0 to 52 (BW at exit = 30 kg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADFI</td>
<td>0.88<sup>a</sup></td>
<td>0.87<sup>a</sup></td>
<td>0.85<sup>b</sup></td>
<td>0.86<sup>b</sup></td>
<td>0.86<sup>b</sup></td>
<td>0.86<sup>b</sup></td>
</tr>
<tr>
<td>ADG</td>
<td>523<sup>a</sup></td>
<td>520<sup>a</sup></td>
<td>502<sup>b</sup></td>
<td>502<sup>b</sup></td>
<td>503<sup>b</sup></td>
<td>501<sup>b</sup></td>
</tr>
<tr>
<td>FCR</td>
<td>1.68<sup>a</sup></td>
<td>1.69<sup>a</sup></td>
<td>1.70<sup>b</sup></td>
<td>1.71<sup>b</sup></td>
<td>1.71<sup>b</sup></td>
<td>1.71<sup>b</sup></td>
</tr>
</tbody>
</table>
Result: occurrence and treatment of PWD in piglets

Figure 1. Cumulative percentage of group treated pens from different dietary treatment groups
Results: Effect on body proportions (slaughtered piglets D11 after weaning)

- No differences among treatments for (p>0.05):
 - Body proportions
 (body length, girth circumference, height over withers, head width)
 - Stomach and small intestinal tissue weight and weight of their contents
 - Blood haematological parameters

- Hind gut tissue weight (140 g) and weight of hind gut contents (147 g) were markedly reduced in OFS fed piglets compared to all other groups
 - Particularly relative to 2500 Zn group (173 and 226 g, respectively)
Conclusion

• Can the alternative supplements tested substitute ZnO in diarrhea prevention? **No!** The tested macroalgae, probiotic and synbiotic products could not:
 – Reduce diarrhea outbreaks compared to 0 Zn fed piglets
 – Improve production parameters (ADG, FI and FCR) above the 0Zn fed piglets

• Can ZnO supplementation be reduced from 2500 to 1500 ppm without compromising piglet health and performance? **Yes!** The reduction did not impact ADFI, ADG or FCR over the entire post-weaning period
 • 1500 ppm ZnO postponed onset of diarrhea during the early sensitive phase of weaning almost as efficiently as 2500 ppm ZnO

• The macroalgae product, OFS, reduced hind gut development
 • Agrees with antimicrobial effect => reduce butyrate production ? (growth factor for hind gut)
 • But clearly not selective towards pathogenic bacteria
Acknowledgements

• Farm staffs at Experimental station Grønhøj
• Morteza Mansouryar, Ina K Julegaard, Katarzyna Abramowicz, Sandra Pico, Hena E Hansen and Marlene N Nielsen
Thank you for your patience!